Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38610507

ABSTRACT

In cardiac cine imaging, acquiring high-quality data is challenging and time-consuming due to the artifacts generated by the heart's continuous movement. Volumetric, fully isotropic data acquisition with high temporal resolution is, to date, intractable due to MR physics constraints. To assess whole-heart movement under minimal acquisition time, we propose a deep learning model that reconstructs the volumetric shape of multiple cardiac chambers from a limited number of input slices while simultaneously optimizing the slice acquisition orientation for this task. We mimic the current clinical protocols for cardiac imaging and compare the shape reconstruction quality of standard clinical views and optimized views. In our experiments, we show that the jointly trained model achieves accurate high-resolution multi-chamber shape reconstruction with errors of <13 mm HD95 and Dice scores of >80%, indicating its effectiveness in both simulated cardiac cine MRI and clinical cardiac MRI with a wide range of pathological shape variations.


Subject(s)
Cardiac Surgical Procedures , Deep Learning , Cardiac Volume , Heart/diagnostic imaging , Artifacts
2.
Med Image Anal ; 89: 102887, 2023 10.
Article in English | MEDLINE | ID: mdl-37453235

ABSTRACT

3D human pose estimation is a key component of clinical monitoring systems. The clinical applicability of deep pose estimation models, however, is limited by their poor generalization under domain shifts along with their need for sufficient labeled training data. As a remedy, we present a novel domain adaptation method, adapting a model from a labeled source to a shifted unlabeled target domain. Our method comprises two complementary adaptation strategies based on prior knowledge about human anatomy. First, we guide the learning process in the target domain by constraining predictions to the space of anatomically plausible poses. To this end, we embed the prior knowledge into an anatomical loss function that penalizes asymmetric limb lengths, implausible bone lengths, and implausible joint angles. Second, we propose to filter pseudo labels for self-training according to their anatomical plausibility and incorporate the concept into the Mean Teacher paradigm. We unify both strategies in a point cloud-based framework applicable to unsupervised and source-free domain adaptation. Evaluation is performed for in-bed pose estimation under two adaptation scenarios, using the public SLP dataset and a newly created dataset. Our method consistently outperforms various state-of-the-art domain adaptation methods, surpasses the baseline model by 31%/66%, and reduces the domain gap by 65%/82%. Source code is available at https://github.com/multimodallearning/da-3dhpe-anatomy.


Subject(s)
Learning , Software , Humans
3.
Int J Comput Assist Radiol Surg ; 16(12): 2079-2087, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34420184

ABSTRACT

PURPOSE: Body weight is a crucial parameter for patient-specific treatments, particularly in the context of proper drug dosage. Contactless weight estimation from visual sensor data constitutes a promising approach to overcome challenges arising in emergency situations. Machine learning-based methods have recently been shown to perform accurate weight estimation from point cloud data. The proposed methods, however, are designed for controlled conditions in terms of visibility and position of the patient, which limits their practical applicability. In this work, we aim to decouple accurate weight estimation from such specific conditions by predicting the weight of covered patients from voxelized point cloud data. METHODS: We propose a novel deep learning framework, which comprises two 3D CNN modules solving the given task in two separate steps. First, we train a 3D U-Net to virtually uncover the patient, i.e. to predict the patient's volumetric surface without a cover. Second, the patient's weight is predicted from this 3D volume by means of a 3D CNN architecture, which we optimized for weight regression. RESULTS: We evaluate our approach on a lying pose dataset (SLP) under two different cover conditions. The proposed framework considerably improves on the baseline model by up to [Formula: see text] and reduces the gap between the accuracy of weight estimates for covered and uncovered patients by up to [Formula: see text]. CONCLUSION: We present a novel pipeline to estimate the weight of patients, which are covered by a blanket. Our approach relaxes the specific conditions that were required for accurate weight estimates by previous contactless methods and thus constitutes an important step towards fully automatic weight estimation in clinical practice.


Subject(s)
Cloud Computing , Machine Learning , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...